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6-S) are not always resolvable (see Figure 1). The value of do,,* together with the shift difference D and the 

intrinsic isotope effects (IIEs)3 of ‘H on r3C chemical shifts (equation 1),3 gives the equilibrium constant and 

thence the CEIL’ Figure 1 shows the methyl group region of the ‘H decoupled 13C NMR spectrum of a 

mixture of 6-S,‘* without and with *H decoupling, from which one may conclude that the CEIEs for 7 and 8 are 

opposite in sign to the CEIE for 6. 
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Figure 1. 13C spectra for the geminal methyl groups of a mixture of 6, 7, and 8 in CS, at 304K: 

(a) ‘H decoupled, showing the difference in 3Jco for Me cis (splittings not well resolved for 6 and 

8) and ~rans to *H at C-3; (b) ‘H and *H decoupled. (*C,H,, internal reference) 

In 5 and 10 the long range 13C(Me)-*H couplings, *Jo, and 5Jon,*1 are too small to be resolved. We 

derive the relative signs of the CEIEs in 5 and 6 on the assumption that the two isotopic substitutions in 7 and 8 

have (approximately) additive effects on the CEIE (the CEIEs in 7 and 8 are the difference and sum respectively 

of the CEIEs in 5 and 6, see Table). The resonances for the methyl groups in the hydrocarbon 10 were assigned 

using [4(t)-2H]-l(t)-[‘3C]-methyl-l(r)-merhylcyclohexane.‘3 

Table. CEIEs for compounds 1-4 (AH”, in isopentane-methylcyclohexane), from variable temperature circular 
dichroism,* and 5-10 (AGO, in C,D, at 304K), from r3C chemical shifts (equation 1). 

AH’ AGO AGo 
/(J mall’) /(J mol“) /(J mall’) 

1 -40 5 153i6 9 12*1 

2 -I8 6 -17+2 10 8+3 

3 -11 7 173+3 

4 -14 8 13053 
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The large CEIEs for the ketones 5, 7, and 8 with 2-2H, with protium preferring the axial position, are not 

consistent in sign or magnitude with a predominant steric effecL4 These CEIEs, however, are consistent with 

(i) hyperconjugation weakening the axial C-H(D) by interaction with then* orbital of the C=0,14 (ii) the lower 

stretching frequency for analogous C-H(D) bonds in simple ketones,t5 and (iii) the lower values of spin spin 

constants ‘J,, (or ‘Jon) fo r axial C-H compared with equatorial C-H,16 analogous to reductions in ‘Jcc in 2(ax)- 

methylcyc1ohexanones.t’ 

The CEIEs in l-3 and 6 are superficially consistent with a steric effect, assuming that the axial C-H(D) is 

more hindered than the equatorial, but this is misleading for 1, 3, and 6. The CEIEs in 1, 3, and 6 are opposite 

in sign to those in the corresponding saturated hydrocarbons 9 and 10” and in [‘Hlcyclohexane itself,‘g~zO in all 

of which (relatively weak) iruns diaxial 6- 6 orbital interactions weakening axial C-H bonds*’ appear to be the 

dominant origin of the CEIEs. The CEIEs in 1, 3, and 6, therefore, must result from one or more effects that 

either strengthen the axial, or weaken the equatorial, 3(5)-C-H bonds enough to overcome the weakening of axial 

C-I-I bonds by lrans diaxial d-6” interactions that must be considered ‘normal’ in cyclohexane itself. We suggest 

that (3(5)eq-C-H)d-rr* orbital interactions, involving the minor lobe of the equatorial 3-C (sp3b orbital, 

weaken the equatorial 3(5)-C-H bonds in these ketoneszl At present we have no direct evidence for such 

weakening in 1, 3, and 6 but this will be investigated through IR spectra and ‘Jcn coupling constants. The 

CEIE observed in 2.6 however, may well be dominated by steric interactions between an axial Z-methyl group 

and axial 4-C-H(D).l’ 

Figure 2. Possible origins of CEIEs in (a) [2-‘HI- and (b) [3-‘HI-4,4-dimethylcyclohexanone, and 

(c) and (d) in 2-[2H,]methyl-2-methylcyclohexanone. 

Djerassi suggested that the CEIE in 4 could be explained by steric repulsions between the carbonyl oxygen 

and the equatorial 2-methyl group but this does not agree with conFormationa equilibria in 2- 

methylcyclohexanone and related compounds,22 We suggest an alternative analysis, analogous to that made for 

the CEIE in 2,2-dimethyl- 1 ,3-dioxan,3 that treats the three hydrogens of a methyl group separately. In an axial 

2-methyl group in (Figure 2) 4 there is (i) a hindered hydrogen (H,), which should give rise to a ‘normal’ sreric 

CEIE, such as is found in l-[2H,]merhyl-l-methylcycIohexane1a and similar hydrocarbons’ (ii) a hydrogen (Hh) 

analogousZS to an equaforial 3(5)CH, as in 1 and 6, and (iii) a hydrogen (Hc) analogous to an a~iai 3(5)-C-H in 1 

and 6. The hydrogens H,, and Hc, if the analogies are valid, should give rise to a contribution to the CEIE in 4 

favouring axial 2-C’H,, ie, an illverse effect. At present we have no information about any special effects that 

may be present in the equatorial 2-methyl group in 4, except that solvent effects in an analogous ketone” are 

consistent with a polar isotope effect favouring equatorial 2-C2H,. 

Djerassi et dia observed no significant solvent effects on CEIEs studied by CD.6 We have found” that 

CEIEs in the ketones 5-8, as in 1,3-dioxans,3 show a significant solvent dependence, qualitatively consistent with 

*H being more negative than ‘H, which will be included in a full paper. 
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